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LETTER TO THE EDITOR

CFT estimates of the universal Binder parameter for
quantum ground-state transitions in one dimension

Naomichi Hatano
Department of Physics, University of Tokyoe, Hongo 7-3-1, Bunkyo-ku, Tokyoe [13, Japan

Received 4 January 1994

Abstract. The universal values of the equal-time Binder parameter for quantum ground-state
transitions in one dimension are predicted with the help of the conformal field theory (CFT) in
two dimensions. The values are compared with the results from the numerical diagonalization
of the § = | antiferromagnetic XX Z chain. It is found that the finite-size comections may be
of a higher order in L~! than expected.

Understanding of phase transitions in two dimensions has been greatly developed since
an infinite number of conformal symmetries of the two-dimensional massless theory were
discovered [1, 2]; see [3] for a review. The application of the theory particularly to finite-
size scaling of one-dimensional quantum systems [4, 5] is of practical importance from the
viewpoint of numerical studies. Comparison between numerical data for finite systems and
predictions of the conformal field theory can reveal the central charge ¢, or the universality
class of a transition.

It seems that numerical studies in this context have, so far, been rather restricted to
calculations of the energy spectrum; there have been only a limited number of studies on
physical quantities at the ground state [6, 7]. It is useful to predict the finite-size behaviour of
physical quantities by means of the conformal field theory; in some cases, e.g. in calculations
by quantuvm Monte Carlo methods [8], it is much easier to obtain physical quantities than
to obtain the energy spectrum.

An especially imporiant quantity is the Binder parameter {9, 10]:
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where A is a parémetcr embedded in the Hamiltonian of a system of size L, the state
|0} denotes the ground state, and OJ; is the relevant order-parameter operator at the site i,
The Binder parameter is one of the critical-amplitude ratios (see [11] for a review), and is
expected to be dimensionless and universal at the critical point

U(Ag; LY = U* = constant. ' @

In the present letter we numerically estimate the universal constant (2) for the critical
theories with ¢ = % and ¢ = 1, and compare the estimates with the results of a numerical-
diagonalization study of the S = 1 antiferromagnetic XX Z chain.
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In a previous study [12], another version of the Binder parameter, which is based on
the response functions, was found to be universal:
x(-ﬂ 2
UresponseEl— 2=1+—"“ for X=X €}
3 ( X (2)) o

in the limit of small #, where 7 is the correlation exponent, and x® and ¥ denote the linear
and the nonlinear response functions, respectively. From the viewpoint of numerical studies,
however, it is easier to estimate (1) than to estimate (3); the quantities {OI(Z ot |O) consist
only of the equal-time correlations of the operators {(;}, while calculation of the response
functions involves the matrix inversion, the numerical differentiation or the evaluation of
all the different-time correlations. Hence we consider that it is an important and unsolved
problem to predict the universal value of the equal-time Binder parameter (1) by means of
the conformal field theory.

Let us describe how to compute the equal-time Binder parameter of the massless theory.

With the help of the conformal field theory in two dimensions, we can write down
multi-point correlation functions on an infinite plain. On the other hand, we can describe
a one-dimensional periodic quantum system of length L in terms of the field theory on a
cylinder of circumference L. The axis « across the cylinder comresponds to the real-space
direction, while the axis v along it corresponds to the inverse temperature, or the imaginary
time direction. )

We obtain the cylinder geometry from the infinite plain by means of the following
conformal map [4):

L
w= Elnz )

where z = x + iy is the complex coordinate of the plain, and w = u + iv is that of the
cylinder. The correlation functions on the cylinder relate to those on the plain in the form

L Nnfe N ”
{OE1)O(z2) - . . O@N))plain = (E) H 2170w Ows) .. Yoyt - 3
J=1
Here 7/2 is the scaling dimension of the operator O.
The equal-time correlations of the one-dimensional quantum system in the ground state
are given by

{010WNO(W2) .. 1 0) = (OWNOWD . Yoyl .. g - (6)

We thus obtain the moments of the order parameter in the forms

(|(Z )"0} = f”'f:,ljd”f 0100w 10). @

These provide the explicit expression of (1) at the critical point.

In the following we derive formulae for the universal values of the equal-time Binder
parameter (2) for ¢ =1 and e = 1. ‘

First we consider the critical theory with the central charge ¢ = 3, namely the theory of
the two-dimensional Ising universality class. The scaling dimension of the order-parameter
operator [1, 2] is %n = % We write down the two-point correlation function on the infinite
plain in the form

AZ

{01022 plain = T2l

@)



Letter to the Editor L225

where z;: = z; — 2, and A denotes an amplitude factor. The four-point correlation function
is given by [2, 13~15]

‘ A Z12234 he
O(21)MNz2)O(z4)O o — | ——— I E—¢]. 9
(O(z1)Nz2)O(23) (24 B plain A + 1§+ ’I I ©)
Here the cross ratio ¢ is defined as follows:
r= 23T (10)
212234
The conformal map (4) gives the correlation functions on the cylinder in the forms
174 A? '
(O w)OwW ey = (7) = . (11
and
(O O(w2)O(w3)O(wa)) ey
1/2
7y 12 A4 $12834 172
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(L) 2 |: 513514823524 2+ ) 1z
with
1 zp X .
b= — = sinh —(u; ) - I3
Sy W sin L(u-,k+1v_,k) (13)

The second and the third terms in the right-hand side of (12) symmetrize the expression
with respect to the subscripts. For example, the second term has the same form as the first
termn except that its subscripts ‘2° and ‘3" are exchanged. We put u;, = 0 as in (6), and
obtain the equal-time correlations in the forms (11) and (12) with s reduced to

L T .
sjp=isin o, ] (14}

The equal-time moments of the order parameter are given by (7).
We thus obtain the final formula of the critical-point Binder parameter (2) for the Ising
universality class in the following form:

1 b

Ur=1-— for c=1 15
! 3~/_2.Jrz‘11 2 )
with
ré)
ar=—5- ‘ SR (16)
C'(z) ,
and
1/2
b= f f a8, d6s a6, [ S12%5¢ +<2+>3>+(2+>4)} . an
§135145938524

In the expression (17) the integration variables have been transformed as wv;/L = 6;. The
numerical evaluation of (15) resulted in

UF = 0.5230 & 0.0012 ' ' (18)

where the error is due to the numerical integration,
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Secondly, we consider the Gaussian model, for which the central charge is unity, ¢ = 1.
The Gaussian model has an infinite number of the scaling fields {S,,,}. The multipoint
correlation functions on the infinite plain are given by the general formula [16]:

N Lptot -
ER; AL . Jl H ‘Mg —
H Snym; (Zi )) = H Zy' * sz’ * i lmimemmm/2 (19)
=1 plain  1Si<k<N
where
+ .
ny =n /Xyt my/ /% (20)

with x, depending on model parameters. In addition, the correlations (19) vanish unless the
following ‘charge neutrality’ condition is satisfied:

N N
Zlnj=zm_i=0. (21)
= j=

If the order-parameter operator O contains the combination of the scaling fields
Sn.m + S—p.—m, we have the two-point function in the form

A2
(OGO CNpin = 55 ([Seum S + (S=rm Sl

AZ
22"

(22)

where

n= nzxp + mzfxp . (23)
Here we have focused on the spinless case pm = 0. Similarly, the four-point function is
given by

212234
213214223224

4
{O(z21)0(22) O(23) O (24 ) prain = 2 [ +2e)N+2 4)] . (24

2

The same procedure as (11)-(14) gives the critical-point Binder parameter (2) for the
Gaussian universality class in the following form:

. _ 1 bg _
Ui=1-grg = for =l 25)
with
(1 —n)/2)
= — 26
T2 6)
and
n
bo = f f d92d93d94[ S125% +(2<+3)+<2<->4>]. on
§13514523524

It is easy to see that we have Ui(n =0) = 5. The Taylor expansion with respect to n gives

Ug =3+ 0. (28)

We show in figure 1 the numerical esnmatcs of (25) for larger #. The change with respect
to n is monotonic. The value for n =1 3 Wwas estimated at

Us(n=1)=04553+ 0.0014. 29)
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Figure 1. The 5-dependence of the critical-point Binder parameter for ¢ = 1. The errors of the
estimates are due (o the numerical integration. The line is a guide for the eye.

Let us describe an example in which we actually observed the above estimates, and
discuss their finite-size corrections. We treated the § = 1 antiferromagnetic X X Z model in
one dimension;

L
H=) [SESh+ 87 S +ASESH] (30)

i=1

with the periodic boundary condition Sie = 5. We numerically diagonalized the
Hamiltonian by the Lanczos method [26] for L £ 16,

The model has been studied extensively since Haldane conjectured [17, 18] that the
ground state is disordered at the Heisenberg point A = 1. After detailed numerical studies
[19-25], it is known that there are two phase transitions at A, = 1.2 (between the Néel phase
and the Haldane phase) and at A, 2~ 0 (between the Haldane phase and the XY phase). The
first one is probably of the two-dimensional Ising universality class, i.e. ¢ = % The second
one is thought to be of the Kosterlitz—Thouless type, i.e. ¢ = 1, and hence the X¥ phase to
be the massless Gaussian phase.

First we explain the results for the transition between the Néel phase and the Haldane
phase. The order-parameter operator for the Néel phase is given by the staggered
magnetization,

0; = (-1)'§%. (31)

The scaling dimension of the operator O; is expected to be 1n = . .
Varying the anisotropy A, we estimated the crossing point (Ac(L, L4-2), U*(L, L+2))
of the equal-time Binder parameters U (A; L) and U/(A; L 4+ 2). In our previous study [25]
we analysed the data allowing for the logarithmic correction, and thus obtained the estimate
U* = 0.544(4). After knowing the value (18) we have become aware that the correction is
more modest, namely of the order L~2; assuming this correction we observe the convergence
to the value (18) as is shown in figure 2. The information about the form of the correction
enables us to extrapolate accurately the critical-point estimate A, from the data A (L, L+2).



L228 Letter to the Editor
054 ——r——— T

0.52

0.50

U*(L,L+2)

0.48

lllllllfllilllihlll

] 1 'l Il I I 1 ] ] 'I 1 I i L 1 L] 1 [l 1

0.46
0.005 0.0t

(L+1)™®

Figure 2. The values of the Binder parameter at the crossing points of U(A; L) and U (A; L+2).
These are based on the data for 8 < L < 16 near A ~ 1.2, or the boundary between the Néel
phase and the Haldane phase, We joined the last two data points o draw the full line, The
symbol on the ordinate indicates the prediction (18).

Thus we obtained
A. = 1.186 4+ 0.002. (32}

This is consistent with the result of an earlier study [24].

Note that the correction to finite-size scaling of the energy gap is expected to be of
the order L~' {12]. The reduction of the correction of the Binder parameter to the order
L~2 may result from some cancellation due to the division in the definition of the Binder
parameter {1).

Next we explain our analysis at A = 0, The ‘pseudo’ order-parameter operator [27] for
the XY phase may be given by

O =57 = 4§F +5) (33)

though the order does not emerge because of the continuous criticality in the XY phase.
The operators S,FE are expected [28] to correspond to the scaling fields S.;4, and hence the
correlation exponent 7 in (23) is reduced to n = x,,. _

So far the location of the transition point between the Haldane phase and the XY
. phase has been controversial [19-22, 24, 29]. Alcaraz and Moreo [30] conjectured that the
exponent x at the anisotropy ) should be given by the following formula if the point of the
anisotropy is located inside the XY phase:

w—cos A
2n

According to this conjecture we have n = § for A =0.

We evaluated the equal-time Binder parameter (1) at A = 0 for L < 16. When we
allowed for the logarithmic correction [31], the estimate extrapolated from our data was
¢ = (.436 &4 0.004, which is inconsistent with the valee for n = %, (29). When we
assumed the leading cormrection to be of the order L~ instead, we extrapolated the estimate

n=x, = for A< A (34)
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Figure 3. The L-dependence of the Binder parameter at A = 0. We joined the last two data
points for L = 14 and L = 16 to draw the full line. The symbol on the ordinate indicates the
prediction (29). .

U* = 0.462 = 0.004 as is shown in figure 3; this estimate agrees with the value (29).
Considering the above analysis of the transition at A == 1.2, it is possible that the order of
the correction again becomes higher with respect to L™

To summarize, we evaluated the universal values of the equal-time Binder parameter
fore = ';li and ¢ = [ with the help of the conformal field theory. We compared the values
with the results of the numerical-diagonalization study of the § = 1 antiferromagnetic XX Z
chain. We found that the correction terms may be of a higher order in L~ than expected.
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