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LETTER TO THE EDITOR 

CFT estimates of the universal Binder parameter for 
quantum ground-state transitions in one dimension 

Naomichi Hatano 
Depmment of Physics, University of Tokyo, Hongc 7-3-1, Bunky0-k~~ Tokyo 113. Japan 

ReEeived 4 January 1994 

AbstracL The universal values of the equal-time Binder parameter for quantum grounditate 
transitions in one dimension ate predicted with the help of the conformal field theory (CFT) in 
two dimensions. The values are compared with the results from the numerical diagonalization 
of the S = I antiferromagnetic XXZ chain. It is found that the finite-size. corrections may be 
of a higher order in L-’ than expected. 

Understanding of phase transitions in two dimensions has been greatly developed since 
an infinite number of conformal symmetries of the two-dimensional massless theory were 
discovered [l, 21; see [3] for a review. The application of the theory particularly to finite- 
size scaling of one-dimensional quantum systems [4,5] is of practical importance from the 
viewpoint of numerical studies. Comparison between numerical data for finite systems and 
predictions of the conformal field theory can reveal the central charge c, or the universality 
class of a transition. 

It seems that numerical studies in this context have, so far, been rather restricted to 
calculations of the energy spectrum; there have been only a limited ‘number of studies on 
physical quantities at the ground state [6,7]. It is useful to predict the finite-size behaviour of 
physical quantities by means of the conformal field theory; in some cases, e.g. in calculations 
by quantum Monte Carlo methods [8], it is much easier to obtain physical quantities than 
to obtain the energy speck”. 

An especially important quantity is the Binder parameter [9, lo]: 

where A is a parketer embedded in the Hamiltonian of a system of size L,, the state 
10) denotes the ground state, and Oi is the relevant order-parameter operator at the site i .  
The Binder parameter is one of the critical-amplitude ratios (see [I 11 for a review), and is 
expected to be dmensionless and universal at the critical point 

U&; L )  = U* = constant. (2) 
In the present letter we numerically estimate the universal constant (2) for the critical 

theories with c = $ and c = 1, and compare the estimates with the results of a numerical- 
diagonalization study of the S = 1 antiferromagnetic XXZ chain. 
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In a previous study [121, another version of the Binder parameter, which is based on 
the response functions, was found to be universal: 

(4) 2 
Ump,,, = 1 - - = I +  - for 1 = b, 

3 ( x  
(3) 

in the limit of small q,  where q is the correlation exponent, and xC2) and xC4' denote the linear 
and the nonlinear response functions, respectively. From the viewpoint of numerical studies, 
however, it is easier to estimate (1) than to estimate (3); the quantities (Ol(C Uj)"IO) consist 
only of the equal-time correlations of the operators [Oil, while calculation of.the response 
functions involves the matrix inversion, the numerical differentiation or the evaluation of 
all the different-time correlations. Hence we consider that it is an important and unsolved 
problem to predict the universal value of the equal-time Binder parameter (1) by means of 
the conformal field theory. 

Let us describe how to compute the equal-time Binder parameter of the massless theory. 
With the help of the conformal field theory in two dimensions, we can write down 

multi-point Correlation functions on an infinite plain. On the other hand, we can describe 
a one-dimensional periodic quantum system of length L in terms of the field theory on a 
cylinder of circumference L. The axis U across the cylinder corresponds to the real-space 
direction, while the axis U along it corresponds to the inverse temperature, or the imaginary 
time direction. 

We obtain the cylinder geometry from the infinite plain by means of the following 
conformal map 141: 

L w=-lnz 
2rr (4) 

where z x + iy is the complex coordinate of the plain, and w 2 U + iv is that of the 
cylinder. The correlation functions on the cylinder relate to those on the plain in the form 

Here q 12 is the scaling dimension of the operator U. 

are given by 
The equal-time correlations of the one-dimensional quantum system in the ground state 

(0 lO(vl)O(vz). . .IO) = (~(uJI)~(WZ). . .)cy,l",=u2 =,..= 0 . (6) 
We thus obtain the moments of the order parameter in the forms 

These provide the explicit expression of (1) at the critical point. 
In the following we derive formulae for the universal values of the equal-time Binder 

parameter (2) for c = f and c = 1. 
First we consider the critical theory with the central charge c = i, namely the theory of 

the two-dimensional king universality class. The scaling dimension of the order-parameter 
operator 11, 21 is f q  = 4. We write down the two-point correlation function on the infinite 
plain in the form 
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where Zjk = z j  - z k ,  and A deno,tes an ,amplitude factor. The four-point correlation function 
is given by [Z, 13-15] 

Here the cross ratio ( is defined as follows: 
213224 

<E-. 
212234 

The conformal map (4) gives the correlation functions on the cylinder in the forms 

and 

with 
1 Zjk  x 
2 @k L Sjk -- = sinh -(ujk + iujk) 

The second and the third terms in the right-hand side of (12) symmetrize the expression 
with respect to the subscripts. For example, the second term has the same form as the first 
term except that its subscripts '2' and '3' are exchanged. We put U j k  = 0 as in (6), and 
obtain the equal-time correlations in the forms (11) and (12) with s j x  reduced to 

(14) 
x 

Sjk = i sin - vjr  . , 

L 
The~equal-time moments of the order parketer are given by (7). 

universality class in the following form: 
We thus obtain the final formula of the critical-point Binder parameter (2 )  for the king 

with 

and 

In the expression (17) the integration variables have been transformed as x q / L  = 6,. The 
numerical evaluation of (15) resulted in 

(18) U; = 0.5230 f 0.0012 

where the error is due to the numerical integration. 
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Secondly, we consider the Gaussian model, for which the central charge is unity, c = 1. 
The Gaussian model has an infinite number of the scaling fields {Sn.m]. The multipoint 
correlation functions on the infinite plain are given by the general formula [16]: 

~~ I"?"+ ! - - N 

(19) =~ n z? , t-r"j"tein(njmi-nim,)/Z n Sq.mj(Zj) 1.L zjk 
[.=I )*lain lGick<N 

where 
~~ 

nj' nj& zk mj/& (20) 
with xp depending on model parameters. In addition, the correlations (19) vanish unless the 
following 'charge neutrality' condition is satisfid 

If the order-parameter operator 0 contains the combination of the scaling fields 
Sn.,,, + S-n.-m, we have the two-point function in the form 

A2 
(0(2l)o(22))p1ain = ((Sn.nS-n.-m)plain + (S-n.-mSn.m)puin) 

(22) 
A2 

12121n 
=- 

where 

(23) q = n Z x p + m  2 /xp. 

Here. we have focused on the spinless case nm = 0. Similarly, the four-point function is 
given by 

The same procedure as (11H14) gives the critical-point Binder parameter (2) for the 
Gaussian universality class in the following form: 

with 

and 

It is easy to see that we have U;(q = 0) = $. The Taylor expansion with respect to q gives 

(28) 
We show in figure 1 the numerical estimates of (25) for larger q. The change with respect 
to q is monotonic. The value for q = 

U;(q= ~)=0.4553f0.0014. (29) 

U ; ; = f + o ( q ) .  2 

was estimated at 



Letter to the Editor L227 
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Figure 1. The 0-dependence of the critical-point Binder parameter for e = I. The emrs of the 
estimates are due to the numerical integration. The line is a guide for Ihe eye. 

Let us describe an example in which we actually observed the above estimates, and 
discuss their finite-size corrections. We treated the S = 1 antiferromagnetic XXZ model in 
one dimension: 

with the periodic boundary condition &+I = SI .  We numerically diagonalized the 
Hamiltonian by the Lancms method [26] for L 6 16. 

The model has been studied extensively since Haldane conjectured 117, 181 that the 
ground state is disordered at the Heisenberg point A = 1. After detailed numerical studies 
[19-251, it is known that there F e  two phase transitions at Ac Y 1.2 (between the Nee1 phase 
and the Haldane phase) and at A, = 0 (between the Aaldane phase and the XY phase). The 
first one is probably of the two-dimensional king universality class, i.e. c = f .  The second 
one is thought to be of the Kosterlit2-Thouless type, i.e. c = 1, and hence the XY phase to 
be the massless Gaussian phase. 

First we explain the results for the transition between the N6el phase and the Haldane 
phase. The order-parameter operator for the Nee1 phase is given by the staggered 
magnetization, 

0; = ( -1 ) iS f .  (31) 

The scaling dimension of the operator 0; is expected to be k q =  $. 
Varying the anisotropy A, we estimated the crossing point (A&, L +2), U * ( L  L+2)) 

of the qual-time Binder parameters U(1; L )  and (I& L + 2). In our previous study [25] 
we analysed the data allowing for the logarithmic correction, and thus obtained the estimate 
(I' = 0.544(4). After knowing the value (18) we have become aware that the correction is 
more modest, namely of the order L-'; assuming this correction we observe the convergence 
to the value (18) as is shown in figure 2. The information about the form of the correction 
enables us to extrapolate accurately the critical-point estimate 1, from the data A,(L, L+2).  
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Figure 2 The values of the Binder parameter at the crossing points of U(A: L)  and U(% L +Z), 
These are based on the data for 8 < L < 16 near A 1 1.2. or the boundary between the N k l  
phase and the Haldane phase. We joined lhe last two d313 points to draw the full line. The 
symbol on the ordinate indicates the prediction (18). 

Thus we obtained 

Ac=1.l86zk0.002. (32) 
This is consistent with the result of  an earlier study [24]. 

Note that the correction to finitesize scaling of the energy gap is expected to be of 
the order L-' 1121. The reduction of the correction of the Binder parameter to the order 
L-' may result from some cancellation due to the division in the definition of the Binder 
parameter (1). 

Next we explain our analysis at A = 0. The 'pseudo' order-parameter operator [27] for 
the X Y  phase may be given by 

(33) 
though the order does not emerge because of the continuous criticality in the X Y  phase. 
The operators SF are expected [281 to correspond to the scaling fields Si1.0, and hence the 
correlation exponent 

So far the location of the transition point between the Haldane phase and the X Y  
phase has been controversial 119-22.24.291. Alcaraz and Moreo [30] conjectured that the 
exponent r) at the anisotropy A should be given by the following formula if the point of the 
anisotropy is located inside the XY phase: 

ui = si" = ;(s: + s;) 

in (23) is reduced to r )  = xp. 

n - cos-' A 
r ) = x , =  2n = for A < (34) 

According to this conjecture we have q = a for A = 0. 
We evaluated the equal-time Binder parameter (1) at h = 0 for L 6 16. When we 

allowed for the logarithmic correction [31], the estimate extrapolated from our data was 
U* = 0.436 zt 0.004, which is inconsistent with the value for JI = 4, (29). When we 
assumed the leading correction to be of the order L-' instead, we extrapolated the estimate 



Leffer to the Editor 
I 9 ' " I ' " '  

0.52 - 

h 

4- 

3 
0 - 0.48 - 

- 

* 

L229 

0.44 - 
0.1 0.2 0.3 

Figure 3. The L d e p d e n c e  of the Binder parameter at A = 0. We joined the last two d m  
points for L = 14 and L = I6 to draw the full line. The symbol on the ordinate indicates the 
prediction (29). 

U' = 0.462 f 0.001 aS is shown in figure 3; this estimate agrees with the value (29). 
Considering the above analysis of the Wansition at A = 1.2, it is possible that the order of 
the correction again becomes higher with respect to L-'. 

To summarize, we evaluated the universal values of the equal-time Binder parameter 
for c = 4 and c = 1 with the help of the conformal field theory. We compared the values 
with the results of the numerical-diagonalization study of the S = 1 antiferromagnetic X X Z  
chain. We found that the correction terms may be of a higher order in L-' than expected. 
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